
Landwirtschaftskammer Niedersachsen

Die Düngeverordnung und der Futterbau

Frerich Wilken
Fachbereich Grünland und Futterbau
Landwirtschaftskammer Niedersachsen

Inhalt

- Wichtige Punkte f
 ür den Futterbau
- Düngebedarfsermittlung
- Stickstoffströme im Futterbaubetrieb
- Fazit

Regelungen

- Begrenzung durch max. 170 kg N / ha
- Nährstoffbilanzierung
- Düngebedarfsermittlung
- Stoffstrombilanz

Begrenzung 170 kg N

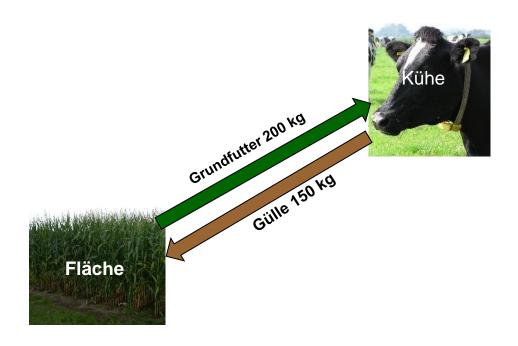
Nährstoffanfall aus Tierhaltung und Biogas

(abzüglich der Stall- und Lagerungsverluste)

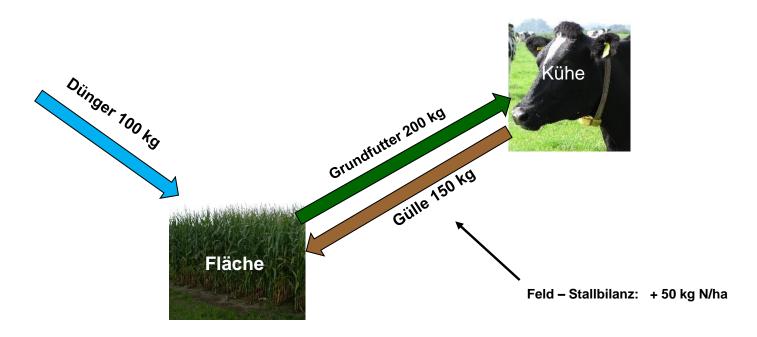
Fläche des Betriebes

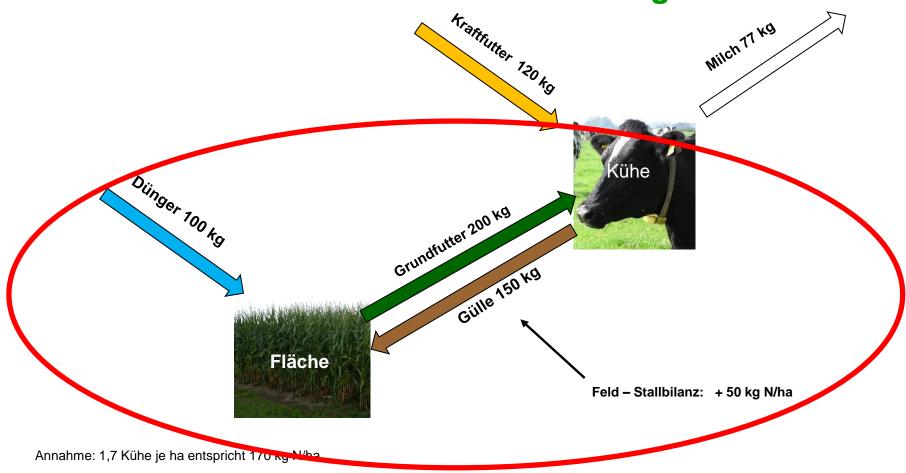
N-Bedarfsermittlung

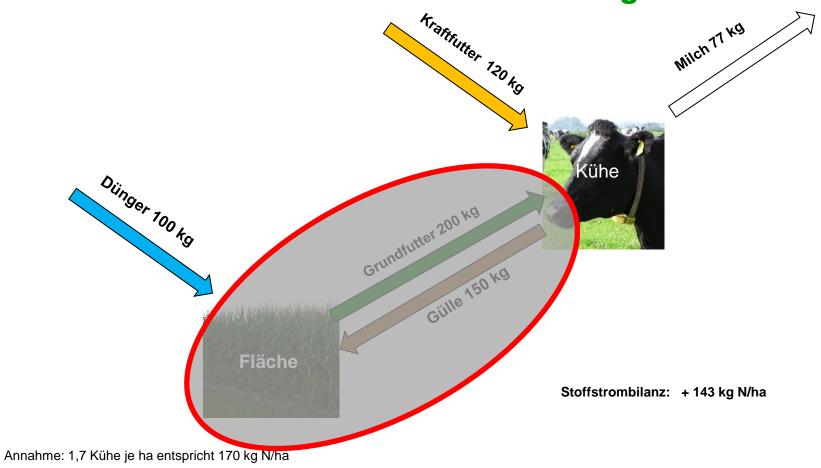
Nutzung		4 Schnitte, Geest	4 Schnitte, Hochmoor	4 Schnitte, Niedermoor
Ertragsniveau	dt TM /ha	90	90	90
Rohproteingehalt	RP % i. T.	17	17	17
Stickstoffbedarfswert	kg N/ha	245	245	245
Korrektur für Ertrag	kg N/ha	0	0	0
Korrektur für Rohprotein	kg N/ha	0	0	0
- N aus Bodenvorrat Mineralb.	kg N/ha	10	0	0
- N aus Bodenvorrat Moor	kg N/ha	0	50	80
- N aus Leguminosen	kg N/ha	0	0	0
- N aus organischer Düngung VJ	kg N/ha	17	17	17
= N-Düngebedarf	kg N/ha	218	178	148


Nutzung		4 Schnitte, Geest	
N -Düngebedarf	kg N/ha	218	
- Org. (170 kg N x 50%)	kg N/ha	85	
= Bedarf N mineral.	kg N/ha	<u>133</u>	

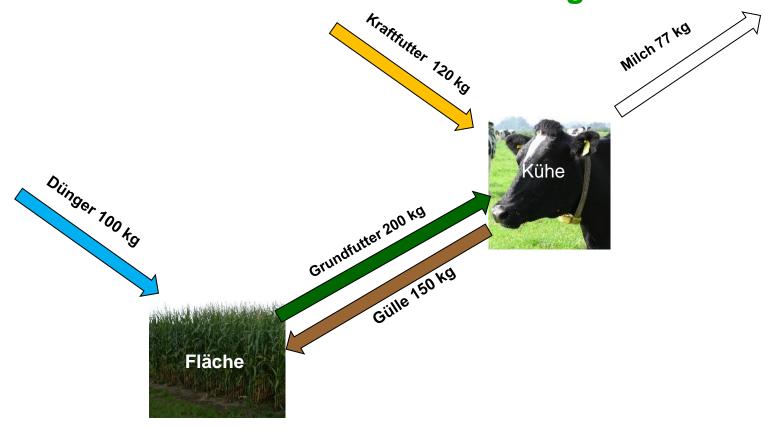
Nährstoffvergleich in der Praxis


- Futterbaubetriebe haben in der Vergangenheit häufig ihre Tierzahl bzw. ihre Fläche an der 170 kg N ausgerichtet.
- Die Bilanzierung stellte i.d.R. kein Problem dar.
- Zukünftig wird trotz Einhalten der 170 kg N Grenze die Bilanzierung zusätzlich begrenzend wirken.
- Vor allem bei P wird es eng (> von 20 auf 10 kg).
- Im Gegensatz zur 170 kg Grenze kann bei der Bilanzierung mit produktionstechnischen Maßnahmen reagiert werden.


Annahme: 1,7 Kühe je ha entspricht 170 kg N/ha



Annahme: 1,7 Kühe je ha entspricht 170 kg N/ha



Annahme: 1,7 Kühe je ha entspricht 170 kg N/ha

Ausgewählte Inhaltsstoffe

jeweils pro t

	N	P_2O_5
Milch 3,45% Eiw.	5,52	2,3
Rindfleisch	25	13,7
Milchleistungsfutter 18/4	29	16
Rapsextraktionsschrot	57,8	24,7
Mineralfutter	0	137,4
KAS	270	0
Milchkuhgülle	4,5	1,9

Ausscheidungen und Grobfutteraufnahme

Zahlen nach DüV für plausibilisierte Feld – Stallbilanz, jeweils pro kg pro Tier Jahr

	Ausscheidungen		Aufnahme über Grobfutter	
	N	P_2O_5	N	P ₂ O ₅
Milchkuh 8.000 L Ackerfutter mit Weide	117	42	93	31
Färse Grünland 5 – 27 Mon.	57	16,4	58	17

Fazit

- Die N Effizienz im Futterbau muss steigen!
- Frühjahrsbetonte bodennahe Gülleausbringung unumgänglich
- Mehr Lagerraumbedarf
- Gezielter, sparsamer Mineraldüngereinsatz
- Gülleunterfußdüngung im Mais (kein P- Mineraldünger)
- N und P reduzierte Fütterung?
- Verlustarme Futterkonservierung
- Steigerung der Grundfutterleistung

Vielen Dank für Ihre Aufmerksamkeit!

