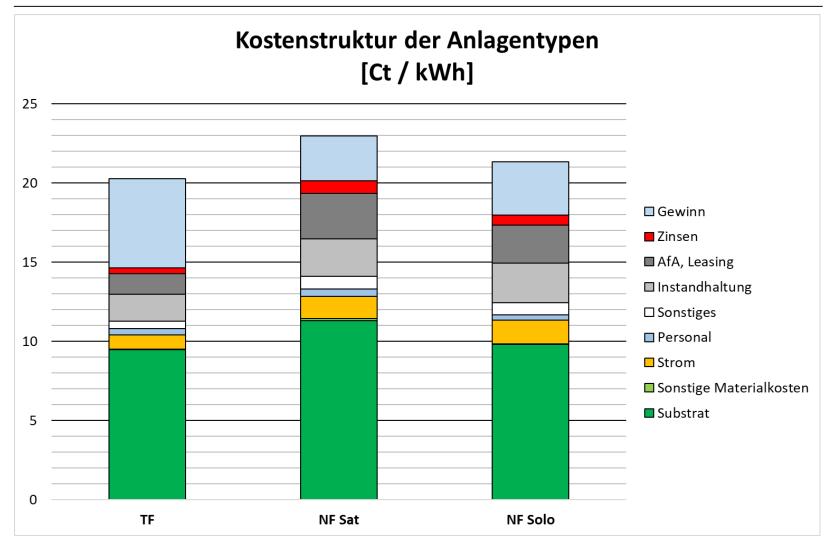
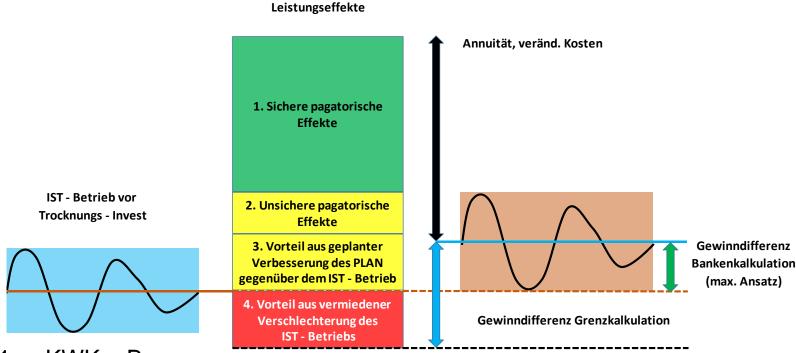

Biogasanlagen als Nährstoffdrehscheibe: Wirtschaftliche Aspekte lokaler Nährstoffsenken

- 1. Off Road Strategien zum EEG Ende
- 2. Erfolg aktueller Anlagentypen
- 3. Investitionen und Laufzeitende
- 4. Thesenrunde: / Nährstoffsenkentypen
- 5. Bewertung von Einsatzstoffen
- 6. Was ist eine ideale Nährstoffdrehscheiben BGA?
- 7. Übergangslösungen?
 - Stofffluss auf der Anlage
 - Separation
 - Trocknung
 - Produktbezogene Nährstoffbilanzierung (Input/Output)
- 8. Abgeber- / Aufnehmerkalküle von Gülle zur Vergärung
- 9. Kooperatives Verhalten um lokale Nährstoffsenken...
- 10. Fazit: Ohne Nährstoffmanagement geht es in Zukunft nicht mehr!

1. Off - Road - Strategien zum EEG - Ende



Wie viele Anlagen bleiben, wie viel Leistung bleibt tatsächlich am Markt?


2. Erfolg aktueller Anlagentypen

3. Investitionen und Laufzeitende

- KWK Bonus
- Produkterlöse
- 3. Verfahrenskostenersparnisse
- 4. Vermiedene Kosten aus Lagerraumbau, Transport, Abgabe, usw.

Wenn der Gewinn nicht höher ist als die vermiedenen Kosten, so ist das Unternehmensergebnis nach der Investition geringer als vorher!

4. Thesenrunde:

- Einige Geschäftsmodelle aktueller Anlagentypen können nach 20 Jahren nicht wie bisher fortgesetzt werden. Dazu gehören:
 - Trockenfermentation mit alleiniger Anbaubiomasse, > 44% Mais (TF Bonus)
 - Betrieb von Anlagen ohne Wärmeverkauf (KWK Bonus)
 - Vergärung von flüssiger Gülle (Gülle Bonus)

Nach Ablauf des EEG stehen die Anlagen vor großen Veränderungen oder Ausstieg!

- 2. Das Anlagenende naht so schnell, dass größere Investitionen wenn auch sinnvoll
 - gefährlich scheinen. Dazu gehören:
 - Aufbereitungstechnologien
 - Flexible Überbauungen

Investitionen müssen die Zukunftsfähigkeit berücksichtigen!

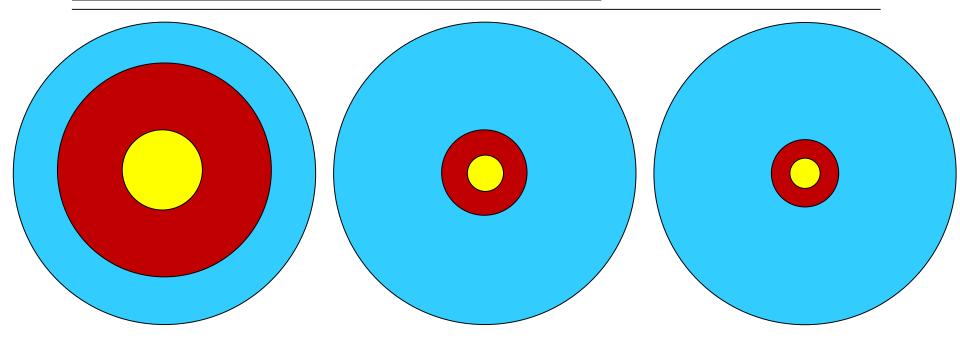
- 3. Die Verarbeitung nährstoffreicher Substrate (Input_{Nähr}) kann auf verschiedenen Wegen erfolgen:
 - Vorhandensein eigener Flächen und Einstreichen einer "Nährstoffrente" (reale Nährstoffsenke rNS)
 - Aufnahme von Nährstoffen zur Vergärung mit Rückgabe des Gärrestes (gar keine Nährstoffsenke ØNS, kleine Drehscheibe. Aber: Anbauflächenreduzierung)
 - Aufnahme und Verarbeitung von Nährstoffen (virtuelle Nährstoffsenke vNS, große Drehscheibe)

Gärrestkonditionierung konkurriert mit Transport!

4. Beispiele für Nährstoffsenkentypen

- rNS: reale Nährstoffsenke = Ausbringfläche vorhanden (zumindest regional!)
 Beispiel: Biogas Gommern GmbH (Erw. 2018; bei Magdeburg, ca. 4 MW_{äq} Gaseinspeisung)
 Ökonomie grds. unproblematisch!
 Wichtig: Sichere Bezugsquellen (Termine, Inhaltsstoffe, Hygiene)
- 2. ØNS: Nährstoffkreislauf, Maisverdrängung Beispiel: Praxisanlage Drewes und Ringen, Breddorf Projektteilnehmer LK ROW/3N "...Mehreinsatz von Wirtschaftsdüngern in Biogasanlagen..." Ökonomie im EEG 2004/09 Wichtig: Win / Win – Situation herstellen
- 3. vNS: virtuelle Nährstoffsenke = konditionierte Nährstoffe müssen in Ausbringgebiete verbracht werden Beispiel: NDM Naturwertstoffanlage Nordvelen Ökonomie noch nicht zu beurteilen! Wichtig: Nährstoffmarkt, Gasmarkt, Technik

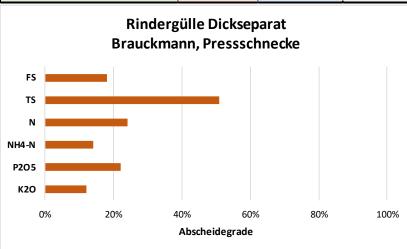
Landwirtschaftskammer Niedersachsen

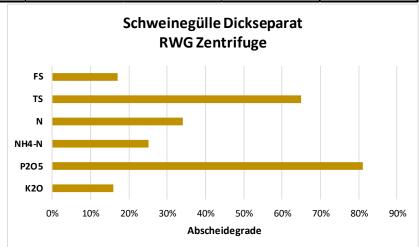


Bilder im Vortrag von Uwe Ringen!

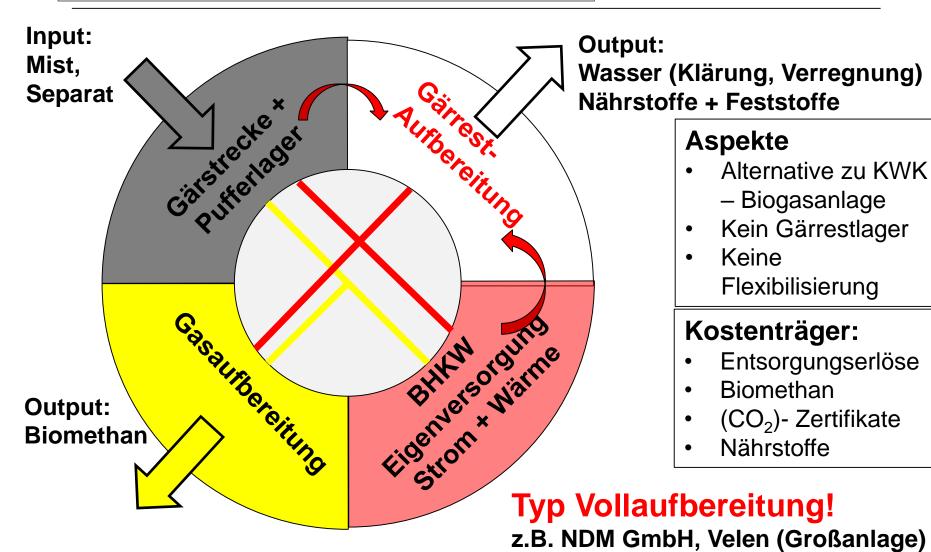
5. Bewertung von Einsatzstoffen

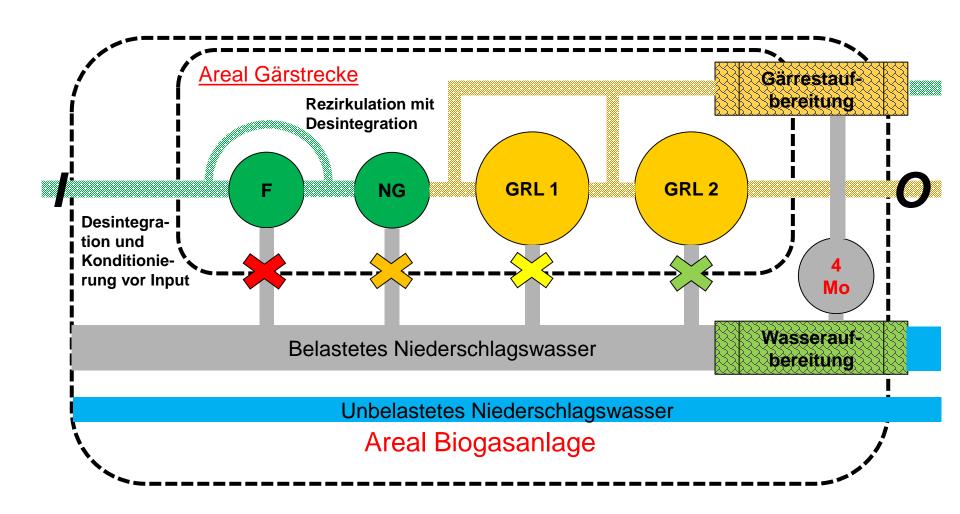
Hähnchenmist 50% TS NP - reduziert Rindergülle 8% TS Milchvieh 8.000 kg Schweinegülle 5% TS NP – reduziert


Wasser sollte nicht auf die Straße - aber auch nicht in die Anlage!

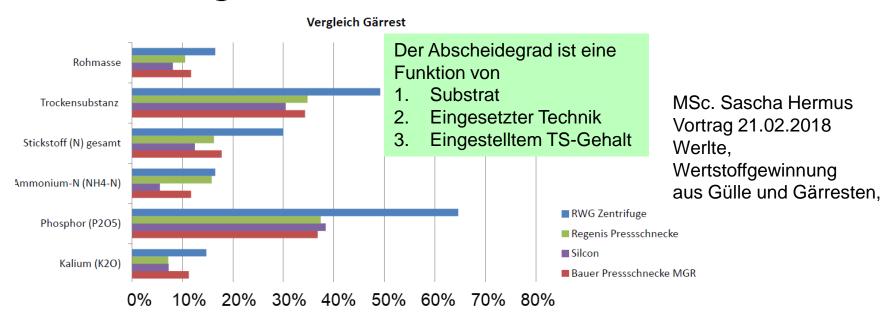

Nicht Gärrest sondern Gülle soll in erster Linie separiert werden!

5. Bewertung von Einsatzstoffen


Größe	Quelle	Einheit	Hmist - NP _{red}	Rinder - G.	Rinder - G. DS	SG - NP _{red}	SG - NP _{red} DS
TS-Gehalt	Wahl	%	50,0%	8,0%	22,7%	5,0%	19,1%
Preis frei Anlage	Markt	€/tFS	,	Je nach Or	rt und Zeitpunkt z	.T. negativ	
Mineraldüngerwert (NPK)	LWK Nds.	€/tFS	34,83	5,35	5,42	6,27	15,40
Methanertrag (TS-adjustiert)	KTBL	kWh/tFS	105,00	13,44	32,37	8,40	27,30
Gaswert (Maisäqu. 40,- €/t)	Berechnung	€/tFS	38,46	4,92	11,86	3,08	10,00
Maisverdrängung (35% TS)	KTBL / Ber.	t Mais / t FS	0,96	0,12	0,30	0,08	0,25
Fugatwert	LWK Nds.	m ³/t FS	0,81	0,98	0,93	0,99	0,93
Lagerraum	LWK / Ber.	m³/MWh Hi	0,77	7,29	2,87	11,79	3,41
N - Lieferung	LWK Nds.	kg/tFS	19,40	3,40	4,53	4,90	9,80
N - Lieferung	LWK / Ber.	kg / MWh Hi	18,48	25,30	14,01	58,33	35,90
P ₂ O ₅ - Lieferung	LWK Nds.	kg/tFS	15,80	1,40	1,71	2,30	10,96
P ₂ O ₅ - Lieferung	LWK / Ber.	kg / MWh Hi	15,05	10,42	5,29	27,38	40,14


6. Was ist eine ideale Nährstoffdrehscheiben - BGA?

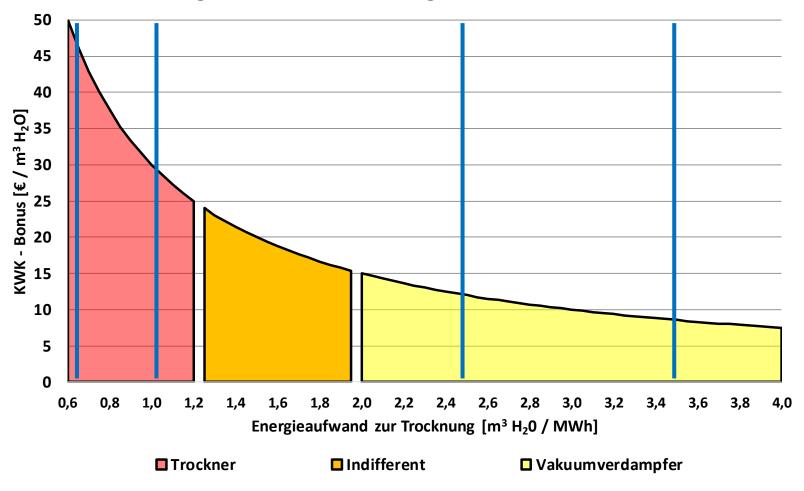
7. Übergangslösungen? Stofffluss auf der Anlage



7. Übergangslösungen? Separation: Die Königin des Trennens

Abscheidegrade

Die Separation ist gut geeignet, Gülle vor dem Eintrag in eine Biogasanlage zu separieren oder Gärrest für ein nachgelagertes Trocknungsverfahren zu konditionieren.


Bei der Separation von Gärresten zur Herstellung von marktfähigen Produkten sollte man die Erwartungen nicht zu hoch schrauben (Abscheidegrad FS! << 20%, Nachfrage zur direkten Ausbringung?).

Kosten der Separation: Pressschnecken ca. 1,50 € bis 4,00 € / m³, mit Flockung 5,00 € bis 10,00 € / m³, Zentrifuge bei 10,00 € / m³ (Kontinuierlich oder absetzig?)

7. Übergangslösungen? Trocknung – ein Vergleich

Förderung der Wassertrennung durch den KWK - Bonus

7. Übergangslösungen? Trocknung: Investitionsbedarf

Investitionsbedarf für Trocknungssys				
Position	Trockner 0.7	Trockner 1.0	Vakuum 2.5	Vakuum 3.5
Pressschneckenseparator		45.000	45.000	45.000
Anschlüsse (Strom, Substrat)		25.000	25.000	25.000
Feststofflager		5.000	5.000	5.000
Trockner	225.000	325.000	620.000	520.000
Kühltisch (-turm)				40.000
Anschlüsse (Strom, Substrat, Wärme)	25.000	35.000	35.000	35.000
Feststofflager				
ASL - Tank		25.000	40.000	40.000
ASL - Abfüllanlage		20.000	20.000	20.000
Anschlüsse (Strom, ASL)		2.500	2.500	2.500
Halle		100.000		100.000
Nachbehandlung Brüdenwasser				
Tiefbau, Fundamente	25.000	25.000	25.000	25.000
Planung, Genehmigung	15.000	15.000	15.000	15.000
Summe	290.000	622.500	832.500	872.500

7. Übergangslösungen? Trocknung: Kostenberechnung

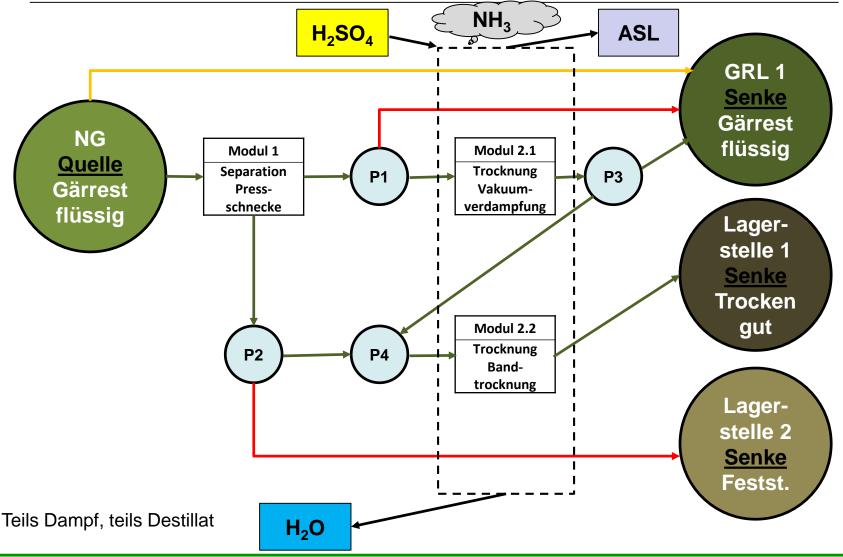
Gesamtaufwand				
Position	Trockner 0.7	Trockner 1.0	Vakuum 2.5	Vakuum 3.5
Annuität	41.312	62.250	83.250	87.250
Unterhaltung	7.375	14.350	22.500	21.500
Strom Pressschneckensparator	0	1.354	1.354	1.354
Arbeit Pressschneckenseparator	0	1.200	1.200	1.200
Strom Trockner	15.768	18.922	26.017	18.922
Arbeit Trockner	3.600	7.200	7.200	7.200
Schwefelsäure	2.640	6.600	11.000	11.000
Summe	70.695	111.876	152.522	148.426

7. Trocknung: Kalkulation bis zum KWK – Bonus, eigene Berechnungen

Kosten / Leistungsrechnung vor Zusa	atzeffekten			
Position	Trockner 0.7	Trockner 1.0	Vakuum 2.5	Vakuum 3.5
Eingesetzte Nutzwärme [MWh]	3.600	3.600	3.600	3.000
Maximaler Wasserentzug [m³]	2.520	3.600	9.000	10.500
Gesamtkosten / m ³ Gärrest	5,64	8,92	12,16	11,84
Gesamtkosten / m ³ Wasserentzug	28,05	31,08	16,95	14,14
KWK - Bonus (EEG 2009, Skz. 1,0)	42,86	30,00	12,00	8,57
Kalk. Ergebnis [€ / m³ Gärrest]	2,97	-0,31	-3,55	-4,66
Kalk. Ergebnis [€ / m³ Wasserentzug]	14,80	-1,08	-4,95	-5,56
Kalk. Ergebnis [€ / Jahr]	37.305	-3.876	-44.522	-58.426

Je höherwertiger die Leistung ist, desto höher ist auch ihr Preis. Der KWK-Bonus allein kann die Wirtschaftlichkeit hier nicht mehr gewährleisten.

7. Trocknung: Zusatzeffekte Quelle: Eigene Berechnungen


Zusatzeffekte ohne Produkterlöse, R	ückkopplung	Ration und \	/erfahrensko	sten
Position	Trockner 0.7	Trockner 1.0	Vakuum 2.5	Vakuum 3.5
Produkte				
- ASL				
- Getrockneter Gärrest				
Effekte einer Rationsänderung				
- Rationseinsparung				
- Outputerhöhung				
Optimierung der Verfahrenskosten				
- Rühren				
- Ausbringen				
Vermiedene Kosten				
- Vermiedener Lagerraumbau	19.656	24.570	52.650	61.425
- Vermiedene Ausbringungskosten	7.560	10.800	27.000	31.500
- Vermiedene Abgabekosten Nährstoffe				
- Vermiedener Zukauf N - Dünger max 20 t	3.888	9.720	16.200	16.200
Summe	31.104	45.090	95.850	109.125
Gesamtergebnis	68.409	41.214	51.328	50.699

7. Unternehmerisches Handeln: Fließdiagramm Aufbereitung im Praxisbetrieb

NH₃

NH₃

ASL

7. Übergangslösungen? Produktbezogene Nährstoffbilanzierung

	Input zur Gärrest -										ſ	V	P ₂	O ₅	K	<u>,</u> O
	Aufbereitung		Tonnen	% TS							kg	% der FS	kg	% der FS	kg	% der FS
	Gärrest		12.541	10,3%							59.710	0,48%	24.873	0,20%	70.648	0,56%
	Niederschlagswasser		3.500	0,0%												
	Summe Eingangsmaterial		16.041	8,0%							59.710	0,48%	24.873	0,20%	70.648	0,56%
							ASL	ASL S	ASL-N	N-Verlust	Subst	rat-N	P ₂	O ₅	K,	20
	Output		Tonnen	% TS	MWh _{therm}	H₂O ↑	m³	kg	kg	kg	kg	% der FS	kg	% der FS	kg	% der FS
1	sep. Feststoff getrocknet	TR1	150	87,0%	300	250	2,66	3.532	1.177	208	1.385	0,92%	2.668	1,78%	1.434	0,95%
2	sep. Feststoff ungetrocknet	SR1	260	32,7%							1.801	0,69%	1.734	0,67%	932	0,36%
3	Filtrat eingedickt	ER2	3.335	9,0%	266	665	32,80	43.543	14.514	764	2.696	0,08%	5.616	0,17%	23.546	0,71%
4	Filtrat nicht eingedickt	SR2	1.340	7,5%							6.021	0,45%	1.881	0,14%	7.888	0,59%
5	Gärrest getrocknet	TR3	250	87,0%	3.000	3.000	8,54	11.340	3.780	1.260	5.040	2,02%	4.199	1,68%	11.927	4,77%
6	Gärrest eingedickt	ER3	1.859	9,0%	915	641	6,57	8.723	2.908	2.908	1.938	0,10%	3.230	0,17%	9.174	0,49%
7	Gärrest unverarbeitet	Rges	4.291	6,7%							13.310	0,31%	5.544	0,13%	15.748	0,37%
8	Schmutzwasser		60	0,0%												
9	Niederschlagswasser		0													
	Summen / Ø		11.546		4.481	4.555	50,57	67.138	22.379	5.139	32.191		24.873		70.648	
											59.710					
1 + 5	Trockengut		400	87,0%							6.425	1,60%	6.867	1,72%	13.360	3,34%
3 + 4; 6 - 9	Rest flüssige Phase		10.886	7,9%							23.966	0,22%	16.271	0,15%	56.356	0,52%
2	Streufähiger Gärrest		260	32,7%							1.801	0,69%	1.734	0,67%	932	0,36%

Zahlenwerte gehören nicht zum Beispiel und dienen nur der Verdeutlichung eines geschlossenen Bilanzsystems.

8. Separation und Logistik: Kalkül des Abgebers – vorteilhaftes Ergebnis

Position	Einh.	Fests	toff _{sep}	Rohgülle Äquivalent		
Abscheidegrad Frischmasse	%		17,50%			
Abscheidegrad N _{Gesamt}			19,10%			
Abscheidegrad P ₂ O ₅			20,68%			
Abgabemenge	t		180,00	1.028,57		
Markterlös	€/t	8,00	1.440,00			
Kalkulatorische Leistungen						
positive Düngewirkung	€/t		0,00			
Minderung Verschleiß, Rüstzeit	€/t		0,00			
Vermiedene Lagerkosten	€/t	4,00	720,00	-4,00	`	
Vermiedene Ausbringkosten	€/t	3,50	630,00	-3,50		
Vermiedene Entsorgung	€/t	11,82	2.127,29	-10,00		
Summe kalkulatorische Leistungen	€/t	19,32	3.477,29			
Summe Leistungen		27,32	4.917,29			
Kosten der Separation	€/t	-8,57	-1.542,86	-1,50		
Kosten des Transportes	€/t	-3,00	-540,00			
Sonstige Kosten	€/t	-0,50	-90,00		Footstoff	
Summe Kosten	€/t	-12,07	-2.172,86		Feststoff _{sep}	
Kalkulatorische Kosten				Gehalt [kg/t]	Preis [Ct/kg]	Faktor
Entgangener N - Wert	€/t	0,00	0,00		0,74	0,70
Entgangener P ₂ O ₅ - Wert	€/t	0,00	0,00		0,60	1,00
Entgangener K ₂ O - Wert	€/t	0,00	0,00		0,50	1,00
Summe kalkulatorische Kosten	€/t	0,00	0,00			
Summe Kosten	€/t	-12,07	-2.172,86			
Ergebnis	€/t	15,25	2.744,44			

- Markterlös gegeben
- Vermiedene Kosten anzusetzen
- 3. Akzeptable reale Kosten
- 4. Keine Kalkulatorischen Kosten vorhanden

8. Separation und Logistik: Kalkül des Abgebers – unvorteilhaftes Ergebnis

Position	Einh.	Festst	toff _{sep}	Rohgülle Äquivalent		
Abscheidegrad Frischmasse	%		17,50%			
Abscheidegrad N _{Gesamt}			19,10%			
Abscheidegrad P ₂ O ₅			20,68%			
Abgabemenge	t		180,00	1.028,57		
Markterlös	€/t	0,00	0,00			
Kalkulatorische Leistungen						
positive Düngewirkung	€/t		0,00			
Minderung Verschleiß, Rüstzeit	€/t		0,00			
Vermiedene Lagerkosten	€/t	0,00	0,00			
Vermiedene Ausbringkosten	€/t	3,50	630,00	-3,50		
Vermiedene Entsorgung	€/t	0,00	0,00			
Summe kalkulatorische Leistungen	€/t	3,50	630,00			
Summe Leistungen		3,50	630,00			
Kosten der Separation	€/t	-11,43	-2.057,14	-2,00		
Kosten des Transportes	€/t	-5,00	-900,00			
Sonstige Kosten	€/t	-0,50	-90,00		Feststoff _{sep}	
Summe Kosten	€/t	-16,93	-3.047,14		resision _{sep}	
Kalkulatorische Kosten				Gehalt [kg/t]	Preis [Ct/kg]	Faktor
Entgangener N - Wert	€/t	-3,23	-581,47	6,23	0,74	0,70
Entgangener P ₂ O ₅ - Wert	€/t	-1,53	-275,40	2,55	0,60	1,00
Entgangener K ₂ O - Wert	€/t	-1,87	-336,60	3,74	0,50	1,00
Summe kalkulatorische Kosten	€/t	-6,63	-1.193,47			
Summe Kosten	€/t	-23,56	-4.240,61			
Ergebnis	€/t	-20,06	-3.610,61			

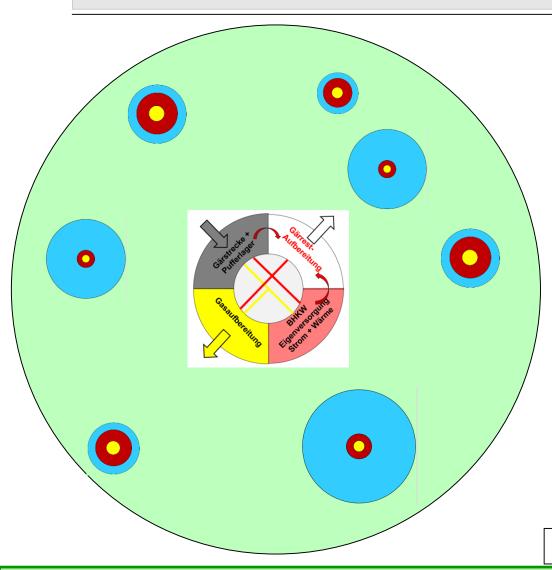
- 1. Kein Markterlös gegeben
- 2. Kaum vermiedene Kosten anzusetzen
- 3. Hohe reale Kosten
- 4. Kalkulatorischen Kosten für Nährstoffentzug vorhanden

8. Substitutionsberechnung: Energiegleicher Tausch und Engpasssalden

Annahmen über	r die Eins	satzstoffe	9			
Inputstoff	% TS	Fugat	CH ₄	N	Р	K
Maissilage	34,0%	0,76	114,4	4,3	1,8	5,1
Rindergülle	8,5%	0,98	16,5	3,7	1,5	4,5
sep. Rindergülle	28,0%	0,93	44,0	6,4	4,0	4,5

Alle Werte sind im Rahmen des Projektes individuell zu ermitteln!

Austauschrechnung Mais zu RG _{sep}						
Kenngröße	Einh.	Maissilage	RG_{sep}	Summe	Nutzen / E	Bedarf / E
Einsatzmenge energiegleich	t	-100	260	160		
Preis	€/t	45,00	10,00			
Saldo Inputkosten	€ _{ges}	4.500,00	-2.600,00	1.90	00,00	
Saldo GRA	m³	-76	242	166	11,46	-5,00
Saldo N	kg	-430	1.664	1.234	1,54	0,87
Saldo P	kg	-180	1.040	860	2,21	1,25
Saldo K	kg	-510	1.170	660	2,88	1,62

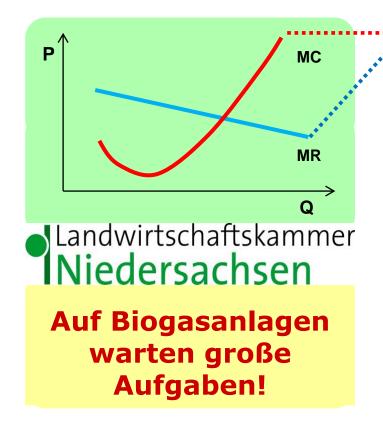

Erste Ergebnisse ohne Berücksichtigung interner Kosten der Gärstrecke.

Austauschrechnung Mais zu RG _{sep}						
Kenngröße	Einh.	Maissilage	RG _{sep}	Summe	Nutzen / E	Bedarf / E
Einsatzmenge energiegleich	t	-325	845	520		
Preis	€/t	45,00	10,00			
Saldo Inputkosten	€ _{ges}	14.625,00	-8.450,00	6.17	75,00	
Saldo GRA	m³	-247	786	539	11,46	-3,50
Saldo N	kg	-1.398	5.408	4.011	1,54	1,07
Saldo P	kg	-585	3.380	2.795	2,21	1,53
Saldo K	kg	-1.658	3.803	2.145	2,88	2,00

9. Maserndiagramm: Kooperatives = Markt

- verhalten um lokale Nährstoffsenken

- 1. Regionale Verarbeitung von nährstoffkonzentrierten Inputstoffen in Biogasanlagen in Nährstoffüberschussgebieten muss letztlich zum Nährstoffexport führen.
- Der Konzentrator kann eine ideale "Gas aus Mist" – Biogasanlage sein.
- 3. Andere Wasserabscheidetechniken sind denkbar. Die Systemkosten entscheiden! Wasser muss nicht verdampft werden, wenn es teurer ist als die Ausbringung vor Ort.
- 4. Nährstoffabgeber könnten frei werden für die Aufnahme von "Dünnmaterial". Der Aufnahmeerlös darf nicht geringer sein als der Abgabepreis von Nährstoffen.
- Kooperatives Verhalten besteht in der Zulassung eines sinnvollen Nährstoff (-entsorgungs) –marktes.


Auf Anregung von Jörg Vogt, MR Zeven

Biogasanlagen als Nährstoffdrehscheibe 11. Biogastagung Verden, 04.03.2020 Peter Schünemann-Plag Landwirtschaftskammer Niedersachsen

10. Fazit: Ohne Nährstoffmanagement geht es in Zukunft nicht mehr!

- 1. Wirtschaftsdünger enthalten Gas und Nährstoffe. Je nach geografischer Lage können Biogasanlagen auf unterschiedliche Art und Weise davon profitieren.
- Reale N\u00e4hrstoffsenken rNS nutzen beides und veredeln den importierten D\u00fcnger in der Biogasanlage durch Homogenisierung, Verbesserung der N\u00e4hrstoffverf\u00fcgbarkeit und zeitgerechte Bereitstellung.
 - Hinweis: Verbundprojekt Wirtschaftsdüngermanagement (LWK BS, NLWKN)
- 3. Nullsenken ØNS nutzen den Gasinhalt zur Finanzierung der Logistik- und Anlagenkosten, um den Gasinhalt der Wirtschaftsdünger nach dem "lokalen rein / raus Verfahren" zu "ernten" und Anbaubiomasse aus der Ration zu verdrängen.
- 4. Virtuelle Nährstoffsenken vNS bieten als Nährstoffdrehscheibe Nährstoffentsorgung in Nährstoffüberschussregionen. Als Nachfrager sind sie ein Hauptakteur auf dem regionalen Nährstoffmarkt und damit ein Hauptpreisbildner. Sie stehen in Konkurrenz zum Export in reale Nährstoffsenken.
- 5. Der Eintrag von Substraten mit konzentrierten Nährstoffgehalten in Biogasanlagen in Nährstoffüberschussgebieten zieht in Zukunft weitere Verarbeitungsschritte bis zur Vollaufbereitung nach sich.
- 6. Bestandsanlagen stehen vor riesigen Transformationsaufgaben.
- 7. Nur ein Slogan? : Der Trend geht von Strom aus Mais zu Gas aus Mist!

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Peter Schünemann-Plag Landwirtschaftskammer Niedersachsen Außenstelle Verden Lindhooper Straße 61 27283 Verden

Tel.: 0 42 31 / 9276-11

E-Mail: Peter.Schuenemann-Plag@LWK-Niedersachsen.de